PHYSICAL REVIEW E 71, 036613(2005

Mode-locking of mobile discrete breathers
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We study numerically synchronization phenomena of mobile discrete breathers in dissipative nonlinear
lattices periodically forced. When varying the driving intensity, the breather velocity generically locks at
rational multiples of the driving frequency. In most cases, the locking plateau coincides with the linear stability
domain of the resonant mobile breather and desynchronization occurs by the regular appearance of type-I
intermittencies. However, some plateaus also show chaotic mobile breathers with locked velocity in the locking
region. The addition of a small subharmonic driving tames the locked chaotic solution and enhances the
stability of resonant mobile breathers.
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I. INTRODUCTION much less is known about the conditions for their mobility.
Nonlinear lattices provide some of the most interesting'” this respect, Hamiltonian discrete breathers have received

model systems of macroscopic nonlinear behavior with ex{comparatively more attention than their dissipative counter-
perimental realization§1]. From a theoretical perspective Parts. However, from the perspective of applications to ex-
they have been progressively recognized not as mere digerimental situations, the unavoidable couplitbgth ther-
cretizations of nonlinear continuous fielésnavoidable for ~mal and nonthermabf the relevant degrees of freedom to a
numerical computationsbut as a target of interest by them- variety of other ones often demands one consider open sys-
selves, due to the distinctive features associated digh ~ tems where power balance, instead of energy conservation,
creteness governs the nonlinear dynamics of the lattice.

Among the variety of behaviors of the lattice nonlinear In this article we pay attention to the problem of synchro-
dynamics, we focus our attention here on the called “intrinsignization and resonant behavior inobile discrete breathers
localized modes” or “discrete breatheréDB’s). DB's are  (MB's) of the forced and damped sine-Gordon lattitee
exact-periodic, large-amplitude, and exponentially localized
solutions[2]. These solutions are made possible by the com-
bination of nonlinearity and discreteness: Nonlinearity al-
lows for solutions out of the linear mode bands, due to the
frequency dependence of the oscillation amplitude. On the
other hand, discreteness sets an upper cutoff in the band
structure and prevents the multiharmonic resonances of DB’s
with extended linear modes. These two simple ingredients
are enough for the existence of DB’s, wherefrom the gener-
ality and wide range of interest of the phenomenon. To visu-
alize an immobile DB see the upper part of Fig. 1.

These excitations are not only interesting from a theoret-
ical point of view but with respect to the experimental appli-
cability as well, concerning fields as diverse as biophysics
(myelinated nerve fibersl], biopolymer chain$3]), nonlin-
ear opticg(photonic crystals and waveguidgs), Josephson
effect (superconducting devic¢s,6], Bose-Einstein conden-
sates[7]) or the physics of glassine$8]. This makes dis-
crete breathers an object of remarkable multidisciplinary in-
terest.

Unlike localization due to impurities or disordéinder-
son), intrinsic localization phenomena support mobile DB
solutions—i.e., exponentially localized oscillations where FIG. 1. Time evolution of two discrete breathets) periodic
the localization center propagates along the lattice as timginned breather an) 1/2-resonantsee text mobile breather. The
goes by(see the lower part of Fig.)1Although rigorous localization center moves a lattice site every two periods of the
results apply to the generic existence of nonmoving DB'’sexternal force.
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one-dimensional(1D) standard Frenkel-Kontorova model Generic MB’s unavoidably excite extended modes
[9-11]], illustrating the effects ofime scale competitioim (loosely referred to as phonognsvhich tend to delocalize
breather dynamics, in a discrete, dissipative, and nonintesnergy. However, in dissipative systems, the locally excited
grable context. The two time scales of the moving pulse argphonons decay exponentially so that the mobile breather
respectively, associated with its frequengyand its velocity  keeps on a finite localization length, essentially determined
vp. Our main results can be summarized as follows. by the self-generated phonon dressing. The power spectrum
(i) Locking of the breather mean velocity at some rational(Fouriep) analysis of the numerically exact MB’s nicely vali-
values of the ratio 2v,/wy, for ranges of parametefsou-  dates their description as a moving source of damped radia-
pling, driving strength, etg.is observable. tion to the extent that the predictions of the theory exactly
(i) The synchronization of breather velocity is deeply match the numerical spectfa5]. For resonant statg$o be
rooted in the structural stability of pure resondit be de-  defined belowone can use Floquet methods in order to per-
fined soon MB’s, but it is by no means limited to it: The form a more thorough analysis of these examples of exact
locking island in parameter space is generally larger than thaonintegrable mobility. This will become technically precise
linear stability domain of the pure resonant breather state. along this section, after explaining briefly the model and
(iii) The “extra” locking domain is characterized by more some relevant issues for the sake of self-containedness.
complex attracting breathers, sometimes chaotic in the The equations of motion of the standard Frenkel-
breather core, but still keeping a locked velocity at largeKontorova model subject to a harmonic driving force
integration times. F.csin(wpt) and a viscous damping are, in dimensionless
(iv) When (subharmonic perturbations are added to theform,
driving term, the stability of the pure resonant MB is en- L
han metim tantiajlytaming chaoti nami . . . :
o dcgggr‘;mz thgslosclli?rfgasteeglgije. g chaotic dynamics 4y, + o SIN27) = ClUjay = 205 + Uyg) + Fag Sin(wgt),
The paper is organized as follows: After this introductory (1)
section we present in Sec. Il, in a brief but self-contained
manner, the relevant and most basic aspects of dissipativghere C denotes the coupling(indeed the coupling/
breather mobility in the forced and damped discrete sinenonlinearity ratio between neighboring nonlinear oscillators
Gordon equatioriFrenkel-Kontorova modgl The definition uj(t) of unit mass.
and characterization ofp/q)-resonant mobile DB's along  Two different mechanisms for mobility of DB solutions of
with the extended Floquet method for the analysis of theieq. (1) have been observed.
linear stability are explained in this section. (i) The spontaneous mirror symmetry breaking of pinned
In Sec. lll we present our numerical results. We show thatjiscrete breathers, which occurs at moderately low cou-
steps of the mode-locking velocity, whelig/ g)-resonant so-  plings, pave the way to mobility in a very natural manner,
lutions exist, are found when varying the driving strength.because a moving DB is a solution with broken symmetry.
We see that this phenomenon is quite general since it is aldndeed, this simple idea is at the origin of a very useful
found for an open set of coupling parameter values. In Seqrocedureg/15-17) to prepare good initial conditions in the
IV we focus our attention on the unlocking transition—i.e., basin of attraction of exact mobile DB’s: As described in
the transition from(p/q)-resonant locking state to quasiperi- detail elsewher§12], adding a small perturbatiof@long the
odic (irrational 2mvy,/ w,) generic velocity. This transition is  symmetry-breaking eigenvector, often dubbed as depinning
characterized as a bifurcation via intermittencies of type | bymode to the immobile exact DB often evolves asymptoti-
using the Floquet methods reviewed in Sec. Il. Section V isally to an attracting moving solution.
devoted to the phenomenon of locking enhancement by add- (i) Immobile quasiperiodic DB’s have been seen to suffer
ing small additional subharmonic driving. Finally, some con-from depinning parametric instabilities leading to mobile
cluding remarks are given in Sec. VI. (typically slowe) DB’s [12] in a range of somewhat larger
values of the coupling parameter. No stable pinned DB co-
Il. MOBILE DB IN THE FRENKEL-KONTOROVA exists in this range with moving solutions.
MODEL: RESONANT STATES AND THEIR STABILITY Once an attracting MB has been precisely determined,
Mobile dissipative discrete breathers have been well charcontinuation from it through variations of parameters such as
acterized 12] in the standard Frenkel-Kontoro¥BK) chain ~ coupling or driving intensity generates a numerically contin-
subject to homogeneous periodic driving and viscous dampded branch of moving breathers. The continuation procedure
ing (see below. These solutions artractorsof the dynam-  of MB'’s from an initial one proceeds by a very smedidia-
ics, and thus they are surrounded in phase space by a basinlgtio change of a parameter—say, for exam@é, (or C
attraction of initial conditions. This fact not only provides or whichevej—and numerical integration during several pe-
fast and accurate numerical methods for the continuation ofiods (Ty) of the external driver. The convergence to the
generic mobile breathern contrast with expensive root breather attractor corresponding fg.+AF,. is guaranteed
finding methods for continuation in the Hamiltonian case to be exponentially fast providefiF,. is small enough and
but also guarantees the very existeft8| of exact moving no bifurcation occurs.
breathers(in contrast also with the Hamiltonian situation,  The range of coupling values where these mobile solu-
where the stability and generality of exact moving solutionstions are observed is very far from the continuum regime;
is currently an issue of debaf&4]). they are roughly in the range fro@=0.5 to 1, and its mo-
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tion has a well-defined average velocity. We should remark Given any solution{{i,(t)}, the combined action of the
here that these MB’s are not related to the breathers of theymmetry operator£, 7, andS gives a family of solutions
integrable(continuou$ sine-Gordon model. The continuum generated by the symmetry group. We will see that the exis-
limit of Eq. (1) is the continuous sine-Gordon equation undertence and structure of this family play a central role in our
external ac forcing and losses, which does not support madnterpretation of numerical results on desynchronization of
bile breather solutiongl8]. moving DB's.

A convenient quantitative descriptor of a mobile localized Now we will make precise the notion of resonant DB,
solution is its translation velocityy. In order to define pre- used in the Introduction. Ap/q)-resonant state is a synchro-
cisely this quantity, one has to introduce a continucanitec-  nized orbit defined as fixed point of the symmetry element
tive variable Xt), naturally interpreted as the instantaneousZP7a, j.e.,
center of localization of energy:

o l’:ln+p(t + qu) = an(t)- (8)
X = Ej=—°cJ G ) If p andq have no common divisors, the state is spide
- resonant Note that it follows from the definition that a
jz=e (p/qg)-resonant MB has a velocity,=(w,/27)(p/q). But it
where®=e;~e, is the energy density referred to the back- is also important to realize that among all conceivable evo-
ground, i.e., lutions {u,(t)} with this velocity, a resonant one is certainly

very special, for it possesses a spedifid’7%) symmetry.

1. 1 C
eJ' = _sz + 2[1 - C0$27TUJ')] + _(UJ - Uj_l)z
2 (2m) 4 B. Linear stability analysis
+9(u~ —u)? 3) Let us consider a small perturbatid(t), (1)} of a
e A given DB solution{u;(t)}. Linearizing around this solution,

. o . we obtain
ande, is g at a sitej far away from the exponentially local-

ized breather core. The breather velocity is then defined as &+ a;sj +cog2mu;(t) |6 = Cl€j1 — 2€; + €j-1). 9)

the following long-term average velocity: . . . ) _
An immobile DB of frequencyw, is a fixed point of the

- e operatorZ. The Floquetmatrix maps a basis of the tangent
vp=(X) :Tlm_ft Xdt. (4) space({€;(0),(0)}), onto{€;(Ty), &(Ty)}, and it is given by
the Jacobian of/—i.e., D(7). The spectrum of eigenvalues

Along a single branch of continued MB’s, the breatherof this Floquet matrix gives the linear stability of immobile
velocity defines a continuoubut not necessarily smooth DB's, allowing the characterization of the bifurcations that
curve. Let us emphasize that moving solutions of velogity these solutions experience along continuation paths, as
possess two characteristic time scales: namejyand 27v,.  shown in Refs[12,15. In order to use these powerful Flo-
The issue of time scale competition is thus of concern hereguet methods for the analysis of mobile solutions, they must
in the sense that one would naturally expect the emergenase periodic, and so one has to restrict attention to
of typically associated phenomena, like resonances and syqp/q)-resonant MB’s.
chronization in the behavior of MB’s, as demonstrated by Because ap/q)-resonant MB is a fixed point of the op-
numerical results to be shown later in Sec. Ill. Now let Usgrator2P79, the (extended! Floquet matrix providing the lin-
introduce some basic notions needed for what follows. ear stability of a(p/q)-resonant MB isD(LPT9)=PM,
where M is the matrix of the linearized equations of motion
integrated oveq T, periods andperiodic boundary condi-

the dynamics.

A. Resonant mobile discrete breathers

(a) Lattice translation(homogeneous system {0;(to) + €(to), Uj(to) + €(to)} — {T;(to), Gj(to)}
L{u; (1)} = {uj41(0)}. (5) +PM{e(to), €(to)}
(b) Discrete timeT,, shift (periodic drivej (10
T{uj(t)} - {uj(t + T} (6) The distinctive property of being an attracting solution of

the nonlinear evolution equatidd) translates into the math-
(c) Space-time mirror symmetrispecific to such situa- ematical assertion that an attracti(g q)-resonant state has

tions) an associated Jacobian matbx£P7%) with (bounded spec-
1 trum inside the complex unit circle:
Sty Oy =1- “i(t * ETb> : @) sugul <1 (11

This operator combines the mirror symme®(u)=-u of  whereu denotes eigenvalues of the Floquet matrix.
the local term sifu) and the center symmetry of the sinu-  Eventually, the exit of a Floguet eigenvalue from the unit
soidal driver:S=R7Y2. circle signals the destabilization of tiie/q)-resonant MB
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by perturbations along the associated Floquet eigenvector. In 0.04——T——— ' —
the linear regime these destabilitations will grow with an
exponential rate. 0.035

III. INTERNAL STRUCTURE OF THE LOCKING REGIME > 003
First of all, we briefly review the method used to generate 0.025
mobile discrete breathers. We begin by generating an immo-
bile discrete breather, starting from the anticontinuum limit L
(C=0). Initially, we have used the same parameters as in 0.0l 0.012 0.014 0.016 0.018 0.02
[15]: F,.=0.02,0,=0.1X 277, anda=0.02. As we increasé Fae
adiabatically, the discrete breather solution remains as an at-
tractor of the dynamicgl5], enabling us to find breathers at
different values ofC, by continuation.
We continue the breathers until the first pitchfork bifurca-

tion [15-17, which connects one-site breathers with two-site .\ hand, the bigger step has a more complex structure: In

breathers via asymmetric ones. The localized eigenmode, rgﬁe range[0.03177,0.0383]1:ac, the MB is periodic with pe-

sponsible for this instability, is asymmetric and can be used. . .
to “depin” the static breather. Then, we generate a MB bynod 2T, and linearly stable. Thesd /2)-resonant solutions

; - ; ; can be continued in coupling parameters frérx¥ 0.71 up to
perturbing the static breathers along this mode with an am=" ~

plitude w. As in[15,16], we found MB’s if the perturbation is C.._O'84' However, .aFa°_0'03831 'the MB suffers'a tran-
larger than some critical valug.. Unlike Hamiltonian sys- sition of perlod tripling(a Floq_uet_elgenvalue and its com-
tems, the velocity reached by the MB is independent &b plex conjugate cross the unit circle at angles/2 and

: o . —2m/3) and rapidly goes to a chaotic state viapariod-
u> ue. This method allows us to produce MB’s in a wide X = LS
range of the coupling parametér Two kinds of MB's have doubling cascadéor F,.=0.03833. The MB remains in this

been observed depending @ for C in the interval[0.5, chaotic state with commensurate velocity, and aroégd

0.89] only induced MB's exist in coexistence with static ZOF'.OA'ZH’ thet: g?lgtéan Ieav;:ts _th;ahstep. ted in th
breathers. However, in th@ range[0.89, 0.97 spontaneous inafly, atl,=0.94 we obtain € curves represented in the

MB'’s appear as attractor solutions, coexisting whith the in-g'g' t?\ Therzla v%e.cznﬁobs?rvet a ver)t/ ”CT b_(;:thawc:r of thfe
duced MB’s. Static breathers are not found in this range reather velocily: diterent stéps at velocily values o

Hence, we have decided to focus our research on som@n/ 2m(L/3), (w,/2m)(419), and (w,/2m)(2/3), as well as

points in those regions. The selected valuesGrd®.55 and an evident hysteresis.. The Iatter Is somg:-how typical of un-
C=0.75 in the first region an€=0.94 in the second. derdamped systems; it implies the coexistenceéadfleast
In order to check the dependence of these MB's on thdWo different MB attractors, with the same model parameters

driving force, we fixC and then we vary,.. Some general which has be_en r_eported pr_evi_ou@l;B,l_QI. The dynamics_in
features emerge in all cases. The simulations show the apl€S€ Steps is simple: periodic and linearly stable, with no
pearance of steps with velocitieg=(w,/27)(p/q). Recall ifurcations inside the plateau. Also a smaller plateau with
that these velocities are the velocities of mode-locked MB’S.\/(EIOC_Ity (_wb(ZTr)(l,/z) 1S found, although in this case only
But this does not guarantee that the MB inside the lockingluasiperiodic MB's exist. For the sake of completeness we
step is(p/q) resonant, so we must check the periodicity of mention that the upper branch can be continued to lower

these MB’s inside these steps. Another empirical observatio aludes ‘?f t_he cougllng ﬂnd corlﬂe(its W'tg MB? %e?eratetd ?%/
is that the limit value of,. before the destruction of the MB € depinning mode, whereas the fower branch belongs fo the

increases witlC. spontaneous MB.

0.02*

FIG. 2. Velocity of the MB vsF,. for C=0.55. A very narrow
plateaué appears. The rest of fixed parameters ape0.1X 27
and «=0.02.

The results withC=0.55 are sketched in Fig. 2. This fig- 0.06———— ‘ .
ure shows the fulF,. range in which MB’s with a definite I 172
velocity exist. One can see an extremely narrow step at ve-
locity v,=(w,/2m)(1/3). The Poincaré section of these solu- 0.051 ]
tions reveals that they apure resonant MBsMoreover, the
linear stability analysis reveals that they are linearly stable > ooa /3 .
inside the whole step interval—i.e[0.01568,0.0158]J:ac.
This type of solution, i.e(1/3)-resonant, has been found in 0.031- i
the whole range o€ values that we investigated.

For C=0.75, the results of the velocity-force curve )
are represented in Fig. 3. In this case we find a bigger -0 0.01 0-02F 0.03 004 005
step at velocity v,=(wy/27)(1/2) ([0.03177,0.04]3:“)
and, again, a very little one atw,=(w,/2m)(1/3 FIG. 3. Velocity of the MB vsF,. showing two mode-locking

([0.01534,0.0153R ). In the whole interval of this last plateaug? and) for C=0.75, the values of andw, are the same
step, the MB is(1/3) resonant and linearly stable. On the that in Fig. 2.
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0 0.02 0.04 0.06 0.08

ac

FIG. 4. (Color onling Same as Figs. 2 and 3 now f6=0.94.
Several mode-locking steps are visible. Note also the hysteresis in

the curve.
< 0.05

Summarizing, the step with velocitywy,/2m)(1/3) is
found in all the range of coupling where MB’s seem to exist.
The range for the step solutions with=(w,/27)(1/2) starts
at C=0.71 since below this coupling a MB with regular mo- 0
tion does not exist in the parameter range studied. At higher 5000 : 10000
C, we observe other locking steps likg=(wy/27)(4/9) and fime
vp=(wp/27)(2/3) for C=0.94. Although we have not been
exhaustive varying in the paramet@rwe can certainly find FIG. 5. Upper panelX-uvjod—i.e., X respect to a moving
these stepgand othersin the whole range of coupling pa- framle that moves Wltmb:(wb/ZW)llz just below the !eft edge of.
rameters, where DB’s are found. the 5 step of the Fig. 3. Jumps _correspond to the intermittencies

Some of the observed locking plateaus coincide with thelescribed in the text. Lower paned:in the same point of response
stability interval of the correspondingp/q)-resonant MB,  Curve.
but in other casegnotably the 1/2 locking step shown in

Fig. 3) the resonant state destabilizes inside the plateau and-. ) : ) _ _
odic) appearance of type-l intermittencies. This mechanism

the new attracting solutiofwith locking velocityvy,) is more - " .
complex: either periodic with a larger period or even chaotic,f0r Unlocking transitions was already observed in the purely

as revealed by the computétirges} Lyapunov exponent. dissipative dynamics of ac-driven modulated structures of
These types of complex behaviors inside a locking plateaf?® FK model24]. intermittencies of type | are also known
are known to happen for a single driven-damped anharmonito be re_spon5|ble for the depinning transition of discrete soli-
oscillator [20], as well as for moving discommensurations (NS (discommensurationsof the underdamped FK model
[21]. In this regard, the result for discommensurations can b 1. . . . . .
reducible to the single-particle case using collective variable From now on in this section we will focus our attention
approaches. In our case, the breather internal degrees of fred? the unlocking transition at the left edge of the 1/2 locking
dom, together with thé&X (breather centervariable, do not  SteP of Fig. 3(C=0.79 which occurs aF,=0.03177. The
allow for a straightforward reduction to single-particle be-€xtended Floquet analysis of thi/2)-resonant MB close to
havior. the edge reveals that an eigenvalue of the Floquet matrix

D(L7?) approaches the value +1 from the interior of the
IV. UNLOCKING TRANSITION complex unit circle along the real axis and leaves the unit
A typical route for the transition from a periodic state to acircle at the trapsition poin.t. The eigenyector asspciated with
quasiperiodic or chaotic one in dissipative systems is thafis Floquet eigenvalue is exponentially localized at the
mediated by intermittencie§22]. Intermittencies occur Dreather center. Out the step, ttig'2)-resonant MB is thus
whenever the behavior of a system seems to switch betwedifearly unstable. o - )
qualitatively different unstable periodic orbits or behaviors N order to visualize the effect of this instability we plot in
(periodic, quasiperiodic, or chaotieven though all the con- Fig. 5 the breather cent_emut of the step but very close to its
trol parameters remain constant and no external noise igdge X and its velocityX in a reference frame moving with
presen{23]. Depending on the type of Floquet instability of the locking velocity(w,/2m)(1/2). One can clearly see in
the periodic orbit responsible for the bifurcatidorossing  Fig. 5 that the breather center remains for some time inter-
the unit circle at +1, at two complex conjugate eigenvaluesyals in laminar regimesof locked velocity, interrupted by
or at -1 intermittencies are classified into intermittencies sudden jumps of very short duration.
type I, I, or I, respectively[22]. We have numerically checked that these laminar regimes
In this section we study the unlocking transition of the correspond to the discrete family of equivalent unstable con-
(p/qg)-resonant MB and characterize it as a transition fromtinuations of the(1/2)-resonant MB, related one to each

fReriodicity to quasiperiodicity driven by the regulgperi-
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10 | \
: 0.001 ™ .

1:2 resonance ™

| 00 m\‘ 3 r———'f
004 F

10»3 3 0.013 0.031777 X o
L | L 1 L 1
0 0.05 0.1 0.15 FIG. 7. (Color online Schematic phase diagram of the behavior
o/2n with a subharmonic perturbation of strengtlvs unperturbed driv-
ing force amplitude-,.. The shaded region refers to more complex
behavior(chaotic, quasiperiodic, or higher resonances than hug

also mode locking. The arrow stands for the path followed in Fig. 8.

S(m)

FIG. 6. Power spectrurf(w) of X showing clearly a quasiperi-
odic behavior.

other by the symmetry operatiols S, and7. Therefore, the perrhation subharmonically related with the original ac
destabilizing Floquet eigenvector pushes the weakly unstablg) e

resonant MBU towards its(equivalent closest member of

the family (which turns out to beS™*{), which is also un- wp

stable, and so on. The duration of each laminar regime, F(t):FacSin(wbt)H\Sin(FHA), (13
which diverges at the bifurcation point, is proportional to

_1)-1 : : . . o
(#=1)7%, wherep is the unstable Floquet eigenvalue. where\ is small compared t6,, n is a positive integer, and

The computation of theower spectrunof X, i.e., A represents a phase shift between both terms.
- 2 Such a kind of perturbation has been proven to be effi-
Sw) = f X(t)eiwtdt ' (12) cient to stabilize linearly unstable periodic orbits. It has been
o used in systems with a few degrees of freed@®h,26 as

. . . well as in solitond27] and even in experimen{&8]. In our
for the attracting MB out of the locking platedsee Fig. 6 456 we achieve lowering the onset of the resonant steps

reveals the new frequenay,=u—1 associated with the in- gjgnificantly. In particular, we focus our attention on the step
termittencies and further confirms that they appear at reguley /5 iy c=0.75 which presents the richest phenomenology,
time intervals, so that the attracting MB out of the step is;nq choosa=2 in Eq.(13) andA=0 (other A values have

quasiperiodic. _ o , been used and the results obtained are essentially similar
This scenario of the unlocking mechanism is confirmed tOrne main results are summarized in the phase diagram of

happen for other numerically obtained plateaus of the moderig 7. For example, the onset of the resonant step is reduced
locked velocity. It appears that the desynchronization b¥.om E. =0.031 777 tcF...=0.013 wher increases from 0
regular intermittent phase shift pulses is quite a generic phag,  ~ (001, %

nomenon. This effect adds to another that takes place inside the step
and that is related to the control of chaos. A chaotic attractor
V. EEFECTS OF SUBHARMONIC PERTURBATIONS like the one developed by a period-doubling cascade inside

OF THE DRIVING FORCE the 1/2-resonant step for valuEg.~ 0.038 33(Wit_h )\:0)_is
formed by a dense set of unstable periodic orbits of different

In the previous sections, we have shown how complex th@eriodicities but all of the same velocity. The addition of a
dynamical response of the system can be. This includesuitable perturbation is able to stabilize one of these unstable
among others, resonant MB’s which are destabilized via inperiodic orbits. The taming of chaotic states in nonantono-
termittencies when the parameters are changed. Inside tlmous dynamical systems by the addition of harmonic pertur-
resonant step, the particular behavior of the oscillators formbations is a quite general phenomer{@5,27,29, and we
ing the breather can be compléxigh order periodic or cha- observe it in the case of these chaotic breathers with locked
otic). However, it does not prevent the breather from havingvelocity.

a definite mean velocity, commensurate with the external fre- To quantify this behavior we compute the largest
quency. Lyapunov exponenf30] of the MB solution at a fixed-,;

Our goal in this section is to enlarge the regions of the=0.04 as a function as the perturbation strengtie start at
parameter space for which those resonant steps exist. Tlaechaotic mode-locking MB. As soon as we apply the pertur-
structure of the quasiperiodic attractor in the vicinity of the bation, a significant decrease of the largest Lyapunov expo-
resonant steps gave us some indications about the procedurent is observed until a narrow region of quasiperiodicity is
to follow. We must reinforce the laminar phagmrrespond- reachedlargest Lyapunov exponent*.0rhen, a sequence of
ingly inhibit the appearance of intermittencigspplying a  periodic and quasiperiodic solutions follows and, finally, a
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observed in static breath€f31], but here we show that it is
compatible with the mode-locking motion of the breather
center(core.

One important issue in the study of localized discrete ex-
citations is the possibility of their dynamical description by
reduction to a system with few degrees of freed@n col-
lective coordinates To our knowledge, two collective coor-
dinate schemes have been developed with mobile breathers.
The first approach described[i82] has produced very fruit-

ful results for discret¢21] and continuuni33] solitons, as
well as for continuum breathef84,35. This approach uses
as a starting point for the calculations the continuum model
solution and fails far from this limit.

The second approadB6] is the geometric counterpart of
the first. It works with mobile breathers in a Hamiltonian
framework, which prevents its direct use in the dissipative
case considered here. However, the possibility of its use in
non-Hamiltonian contexts, under certain technical condi-
tions, is still open as was briefly pointed out in RES7].

Although analytical methods for a collective coordinate
approach to mobile dissipative discrete breathers have not
been yet developed, our numerical results strongly suggest
that such an approach could give an accurate account of most

000008 500012 of the observed phenomenology. We hope that the results
2 presented here could encourage a search of those methods.

Finally, we remark on the important role that a second

FIG. 8. (Color online (Uppe) Largest Lyapunov exponeit§) harmonic in the forcing plays in the dynamics of the MB. We
for F,.=0.04.(Lower) Poincaré section oX at intervals I, so a  observe that the presence of a small subharmonic driving
single point is indicative of a periodic solution in the mode-locking term enhancegp/q)-resonant solutions. Increasing the sub-
step at its corresponding value. harmonic amplitud€13) from zero, an initially chaotic MB

can be tamed, above some threshold, obtaining a nonchaotic
broad region of periodic solution, with the perturbation pe-one[quasiperiodic olp/q) resonant The feasibility of the
riod (see Fig. 8 Note that all this is attained with mtwo  experimental implementation of different wave forms for
orders of magnitude smaller thé. driving forces could falicitate the observation of these solu-

At fixed C, one cantung by varying\, the desired peri- tions since they are more robust and stable.
odic state. This method is extremely robust against changes In summary, we have shown that the mode-locking mo-
in C. The pure resonant MB solution can be extended for dions of breathers are stable solutions for an important ex-
wide range of the couplin€. Using an appropriated we  ample of nonlinear lattices such as the Frenkel-Kontorova
have extended the 1/2-resonant solution ffén71, 0.84to  model. We have characterized this mode-locking solution as
[0.5, 0.84 in the coupling parameter. well as the mechanisms for the unlocking. Finally we have
applied a simple method to extend this kind of solutions to a
large range of values in parameter space.

-0.05

X (1)

015 .

L 1
0 0.00004

VI. CONCLUDING REMARKS AND SUMMARY

We have studied mobile discrete breathers in the under-
damped Frenkel-Kontorova model. Periodi¢or p/
g-resonant solutions have been found for a large range of We thank J. L. Garcia Palacios and J. J. Mazo for a read-
parameter value@sC andF,.). These states are structurally ing of the manuscript. D.Z. is grateful to M. Meister for
stable as they are a consequence of the synchronization baiscussions. Financial support from European Network
tween the two time scales of the mobile breather. This syntOCNET Grant No. HPRN-CT-1999-00163 and also from
chronization(or its absenceresults in a very rich dynamics the Spanish MCyT and European Regional Development
of the mobile breather solutions, including quasiperiodic andund (FEDER program through the BFM2002-00113
chaotic ones. Localized chaotic behavior has been previoushyroject is acknowledged.
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